50 research outputs found

    Modeling Heterogeneous Materials via Two-Point Correlation Functions: I. Basic Principles

    Full text link
    Heterogeneous materials abound in nature and man-made situations. Examples include porous media, biological materials, and composite materials. Diverse and interesting properties exhibited by these materials result from their complex microstructures, which also make it difficult to model the materials. In this first part of a series of two papers, we collect the known necessary conditions on the standard two-point correlation function S2(r) and formulate a new conjecture. In particular, we argue that given a complete two-point correlation function space, S2(r) of any statistically homogeneous material can be expressed through a map on a selected set of bases of the function space. We provide new examples of realizable two-point correlation functions and suggest a set of analytical basis functions. Moreover, we devise an efficient and isotropy- preserving construction algorithm, namely, the Lattice-Point algorithm to generate realizations of materials from their two- point correlation functions based on the Yeong-Torquato technique. Subsequent analysis can be performed on the generated images to obtain desired macroscopic properties. These developments are integrated here into a general scheme that enables one to model and categorize heterogeneous materials via two-point correlation functions.Comment: 37 pages, 26 figure

    Chord distribution functions of three-dimensional random media: Approximate first-passage times of Gaussian processes

    Get PDF
    The main result of this paper is a semi-analytic approximation for the chord distribution functions of three-dimensional models of microstructure derived from Gaussian random fields. In the simplest case the chord functions are equivalent to a standard first-passage time problem, i.e., the probability density governing the time taken by a Gaussian random process to first exceed a threshold. We obtain an approximation based on the assumption that successive chords are independent. The result is a generalization of the independent interval approximation recently used to determine the exponent of persistence time decay in coarsening. The approximation is easily extended to more general models based on the intersection and union sets of models generated from the iso-surfaces of random fields. The chord distribution functions play an important role in the characterization of random composite and porous materials. Our results are compared with experimental data obtained from a three-dimensional image of a porous Fontainebleau sandstone and a two-dimensional image of a tungsten-silver composite alloy.Comment: 12 pages, 11 figures. Submitted to Phys. Rev.

    Structure-property correlations in model composite materials

    Get PDF
    We investigate the effective properties (conductivity, diffusivity and elastic moduli) of model random composite media derived from Gaussian random fields and overlapping hollow spheres. The morphologies generated in the models exhibit low percolation thresholds and give a realistic representation of the complex microstructure observed in many classes of composites. The statistical correlation functions of the models are derived and used to evaluate rigorous bounds on each property. Simulation of the effective conductivity is used to demonstrate the applicability of the bounds. The key morphological features which effect composite properties are discussed

    Low Frequency Propagation of Elastic Waves in a Fluid-Filled Borehole

    No full text
    International audienceno abstrac

    Interface Utilisateur: outil de contrôle, surveillance, prévision et alerte

    No full text
    Interface Utilisateur: outil de contrôle, surveillance, prévision et alert

    Développement d'indicateurs et modélisation prédictive des proliférations algales

    No full text
    Développement d'indicateurs et modélisation prédictive des proliférations algale
    corecore